
In basic occupancy models, the two main 
parameters of  interest are the proportions 
of  N sites occupied (Ψ) and the probability 
of  detecting species Z (p). A detection 
history (Xi) can then be used to estimate a 
site specifi c Ψ at site i. For example, if  site i 
was sampled six times, and species Z at site 
i had a detection history of  “001100”. This 
denotes that the species was not detected 
at the site during the fi rst two or last two 
sampling occasions, but was detected in the 
third and fourth sampling occasion. The 
probability of  observing the above outcome 
can be described as:

(1.0)

A history of  all 1s denotes that a species 
was detected at each sampling occasion, 
while a detection history of  all 0s denotes a 
history where the species was never detected. 
Given the number of  sampling occasions, 
there are a variety of  combinations of  
detections and non-detections at a site. This 
can be described as: 

(2.0)

This likelihood can then be used to 
calculate the maximum likelihood estimates 
for model parameters of  interests (i.e., 
site occupancy). However, MacKenzie 
et. al. express occupancy and detection 
probabilities based on various site and 
sample level covariates (x).3 Therefore, a 
logistic regression is used to estimate the 
parameter of  interests (θi) by the following 
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Introduction
In the face of  many potential 

negative impacts on wildlife populations, 
understanding species distributions across 
landscapes has become an important 
consideration in many ecological studies.1,2 
Because some species and individuals 
are cryptic (hard to see or fi nd), recent 
advancements in wildlife research have 
emphasized the importance of  accounting 
for detection probability in estimating 
population and landscape level parameters.3,4 
Tied with this advancement in ecological 
statistics, is the use of  presence/absence 
data, which is often less time and cost 
intensive than count and mark/re-capture 
studies to estimate population abundance 
and occurrence.4

Recent population models have been 
developed that take into account imperfect 
detection probabilities (p<1.0) while 
estimating the probability that a site is 
occupied by a species.3,5 Although similar 
models have been developed in the past, the 
model developed by MacKenzie et. al. has 
proven to be more robust, and has become 
widely used in monitoring programs, 
ecological studies, and conservation 
biology.3,6,7 

MacKenzie et. al. use a sampling design 
where a certain number of  sites (N) are 
sampled a specifi c number of  times (T). 
Researchers visit the sites multiple times (T), 
and detect species using various methods 
(e.g., point counts, traps). Then for each site 
(i) a detection history can be observed (Xi) 
and a combination of  site and sample level 
covariates can be used to explain variation.3,5

equation:
(3.0)

The goal of  using models to estimate 

individual, population, and community-level 
parameters is to fi t a set of  models that 
represents the researchers’ hypothesis to a 
given data set to choose the most accurate 
model(s).8 A popular approach in ecological 
studies is to use model selection techniques 
such as Akaike’s Information Criterion (AIC) 
to choose the model that best fi ts the data.8 
However, an important assumption in using 
such model selection criteria, is that at least 
one model adequately fi ts the data.8,9 This 
raises concerns that without other methods 
to assess model fi t, researchers could make 
the mistake of  choosing the statistical 
model that best fi ts the data, rather than an 
ecological model that accurately describes 
the environment being studied. 

A good ecological model of  species 
distributions may hinge on accurate 
estimates of  overdispersion.11 Although the 
method for calculating the overdispersion 
parameter for occupancy models has 
been developed recently, few studies have 
investigated its accuracy with respect to the 
numerous effects it may have on different 
data sets.12 Additionally, the application of  
this method is still not directly included in 
popular population modeling software such 
as MARK.13 However, the program does 
have the ability to call on other programs to 
assess model fi t. 
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Despite this recent advancement in 
assessing model fit for site occupancy studies, 
few demonstrated studies have evaluated the 
potential effects of  overdispersion on model 
results. We had two primary objectives. First, 
we review the method for assessing model 
fit used in our study.12 Second, we validate its 
use in ecological studies.  Specifically, we test 
the importance of  assessing model fit on a 
data set of  detection/non-detection data on 
winter bird habitat use in Northern Colorado 
to show the importance of  accounting for 
model fit. With the recent development 
of  powerful statistical software that has 
increased the access to modelling, studies 
that evaluate the importance of  different 
methodologies within these programs are 
crucial to keep scientists aware of  ways to 
evaluate the efficacy and reliability of  their 
model sets.

Methods
Assessing model fit 

MacKenzie and Bailey assess model 
fit by obtaining a test statistic for a model 
calculated as:

(4.0)

By acquiring a test statistic the over 
dispersion parameter can be calculated as 
described by White et. al., and modified for 
occupancy studies in MacKenzie and Bailey:

(5.0)

In (5.0), the denominator represents 
the average test statistic obtained from the 
bootstrap procedure described above.12,14 

This estimate can then be used to adjust 
variation and model selection criteria (i.e., 
switch from AIC to QAIC). 

Field data collection
We collected data on winter bird habitat 

use from December 2012-March 2013. A 
total of  53 sites were sampled in Northern 
Colorado with four each site being sampled 
four times on average. Sites were sampled 
along a residential housing gradient built 
in ArcGIS 10 using a fixed kernel density 
estimator map that scaled the home range size 
of  the coyote..15 This study was conducted 
simultaneously with a study investigating 
the effects of  exurban development on 
mammalian habitat use. However, the home 
range size of  the coyote is appropriate for this 
study as it is large enough to encompass the 
winter home range size of  small passerines 
which were the focus of  this study.  This was 
then used as a resistance layer in a least-cost 

each point. These surveys were then used to 
calculate the percent of  audible non-natural 
noise. Finally, in a 25 meter radius around the 
center of  each point, we recorded the ocular 
proportion of  canopy cover, and percent 
understory cover (to the nearest 5%), and 
the average understory height of  vegetation 
(to the nearest 0.1 meter). These data were 
used as site covariates in combination with 
the residential gradient, percent of  land 
privately owned, and percent audible non-
natural noise (Table 12). We chose to collect 
environmental covariates on a micro scale 
(25 meter radius around each point), and 
a macro scale (using ArcGIS) in order to 
attempt to accurately describe the possible 
variables that may affect species occurrence. 
Information on the time of  day, temperature 
(average high for day in degrees C), wind 
(assessed qualitatively on a scale from 0-5), 

distance map. For the purposes of  this paper, 
this methodology will not be covered as it 
does not directly relate to assessing model 
fit. We mean to make no commentary based 
on the importance of  these covariates, but 
rather use them to draw inference on how 
accounting for overdispersion can affect 
model inference. 

Fixed-radius point counts were used at 
each of  the 53 sites to assess winter bird 
habitat use. Each site was visited, then all 
birds were noted during the duration of  
a seven-minute count within a 100 meter 
radius. Additionally, we used ArcGIS to 
calculate the percent of  privately owned land 
in a 40 meter radius around each point. To 
account for other anthropogenic covariates, 
we used a handheld palm pilot from the 
National Park Service Sounds and Night Sky 
Division to conduct 15-minute surveys at 

Site Name X Actual Y Actual Site Name X Actual Y Actual
B2-1 483867 4510303 G1-10 464200 4509073
B2-2 483615 4509717 G1-11 464294 4508333

B2-3 482956 4511847 G1-12 465458 4506880
B2-4 482416 4511103 G1-13 464549 4507127

C1-1 465868 4523248 G1-14 466535 4509776
C1-2 467140 4523731 G1-15 467205 4509168

C1-3 465948 4522843 G1-3 463982 4509791
C1-4 463235 4523412 G1-4 463348 4510539
C1-5 462516 4524985 G1-5 465144 4508427
C1-6 461007 4523529 G1-6 465288 4509670
C1-7 469975 4522413 G1-7 464643 4510563
C1-8 468295 4525369 G1-8 462950 4509562
C1-9 463482 4524075 G1-9 465185 4510246
C2-1 461618 4530621 G2-1 464477 4509977
C2-2 457867 4530278 G2-10 465407 4511262
C2-3 459928 4531678 G2-11 461741 4510321
C2-4 460574 4531915 G2-2 464815 4509810
C2-5 461067 4528801 G2-3 463724 4510151
C2-6 458701 4532193 G2-4 463936 4510501
C2-7 460237 4528897 G2-5 462689 4510645
DM-1 472006 4509257 G2-6 462535 4510406

DM-2 469541 4508237 G2-7 465378 4508030
DM-3 471298 4509557 G2-8 462803 4511118
G1-1 464493 4509513 G2-9 462505 4509727
U1-4 469009 4531360 U1-1 464366 4537487
U2-1 462181 4536457 U1-2 465027 4537177

U2-2 464785 4537422 U1-3 467735 4534961
Table 1. Coordinates for points located in Northern Colorado where data was collected

𝑋𝑋2 = ∑ (𝑂𝑂ℎ−𝐸𝐸ℎ)2
(𝐸𝐸ℎ)

2𝑇𝑇
ℎ=1 .12  

𝑐̂𝑐 = 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜2

𝑋𝑋𝑐𝑐2
.14  
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and percent cloud cover (to nearest 10%) 
was taken at each point. Furthermore, some 
point counts were only conducted a few 
minutes apart and therefore lacked temporal 
variation. To account for this in our model 
set, we used a “trap response covariate” as 
used by many mark-recapture studies.16 This 
will not be discussed extensively for the 
purposes of  this study. 

Data analysis
Program PRESENCE was used to fit 

occupancy models, calculate maximum 
likelihood estimations, and investigate the 
importance of  accounting for overdispersion 
in occupancy models.5 For each species, a 
global model (i.e., most parameterized) was 
run with 10,000 parametric bootstraps. 

We fit the occupancy parameter as 
constant with six site-level covariates, and 
fit detection probability as constant with six 
sample-level covariates (Table 1). For each 
species, we parameterized the occupancy 
to its most general state) [Ψ(gradient + 
% canopy cover + own + % audible non-
natural noise + % understory cover)] and 
fit it with each of  the possible covariates 
for detection probability (Table 2) to come 
up with the covariates that most impacted 
detection.3

 
Results

We fit single-season occupancy models 
on the American Robin (Turdus migratorius) 
the Black-billed Magpie (Pica hudsonia), the 
Steller’s Jay (Cyanocitta stelleri), the Townsend’s 
Solitaire (Myadestes townsendi), the Pygmy 
Nuthatch (Sitta pygmaea), the Dark-eyed 
Junco (Junco hyemalis), and the Mountain 
Chickadee (Poecile gambeli).

Estimates of  c-hat for the global model 
(i.e., most parameterized) varied by species. 
For example, the American Robin had an 
estimate of  <one overdispersion, indicating 
the most global model is accurately modeling 
reality (Table 3). However, for the Steller’s 
Jay, the overdispersion factor was extremely 
high (Table 2; c=7.0).

The examination of  two species yielded 
different overdispersion parameters, but 
both estimates were >1.0 reveals the effect of  
the c-hat parameter on model inference. The 
c-hat parameter for the Black-billed Magpie 
was 1.3. Accounting for overdispersion in 
the model set of  the Black-billed Magpie 
caused model inference to change (Table 
4). The  most accurate model set (AIC 
weight>0.10), while not accounting for 
overdispersion revealed that occupancy was 
most impacted by land ownership and that 
detection probability was most impacted by 
wind (Table 3). However, after accounting for 
overdispersion within the data set (i.e., model 
set 2), the null model [Ψ (.), p(wind)], became 

Occupancy (Ψ) Detection Probability (p)
Constant Constant

Percent Canopy Cover Time of  Day
Residential Gradient Wind (1-5 scale)

Percent Understory Vegetation Cover Temperature (C)
Average Understory Height Percent Cloud Cover

Percent Audile Non-Natural Noise Percent Canopy Cover
Percent of  Land Private in 40m radius Trap Response

Table 2. The covariates used to estimate site specific occupancy and detection probability.

Species c-hat
Dark-eyed Junco 2.5
Black-billed Magpie 1.3
Townsend’s Solitaire 0.9
American Robin 0.5
Mountain Chickadee 1.0
Pygmy Nuthatch 1.3
Steller’s Jay 7.0

Table 3. Estimates of  the overdispersion 
parameter as a result of  10,000 parametric 
bootstraps for each of  the global models for the 
seven species.

Model Set 1 AIC ∆AIC AIC weight K -2LogLike
Ψ (ownership), p(wind) 227.1 0 0.36 4 219.1
Ψ (.), p(wind) 227.47 0.37 0.21 3 221.5
Ψ (US height), p(wind) 228.9 1.88 0.10 4 221.0

Model Set 2 QAIC ∆QAIC QAIC weight K -2LogLike
Ψ (.), p(wind) 170.25 0 0.24 3 221.5
Ψ (.), p(wind) 170.49 0.24 0.22 4 219.1
Ψ (.), p(wind) 171.88 1.63 0.11 4 221.0

Table 4. The most accurate models (AIC weight>0.10) for the black-billed magpie. The first set of  models represent 
models that were not adjusted by the c-hat parameter, and second set represents models adjusted for over dispersion.

Model Set 1 AIC ∆AIC AIC weight K 2LogLike
Ψ (US height), p(.) 107.64 0 0.16 3 101.6
Ψ (US height).p(%cloud) 107.74 0.1 0.15 4 99.7

Model Set 2 QAIC ∆QAIC QAIC weight K 2LogLike
Ψ (.), p(.) 107.74 0 0.15 2 105.9

Ψ (US height), p(.) 46.21 0.33 0.13 3 101.6
Table 5. The most accurate models (AIC weight>0.10) for the dark-eyed junco. The first set of  models represent 
models that were not adjusted by the c-hat parameter, and second set represents models adjusted for overdispersion.
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the top model (i.e. model with highest QAIC 
weight). In both cases the third model in the 
top model set (AIC weight>0.10) showed 
that occupancy was impacted by understory 
vegetation height (US height).

The c-hat parameter for the Dark-eyed 
Junco was 2.5 (Table 2). In model set 1, 
which did not account for overdispersion, 
the first model (AIC weight=0.16) revealed 
that occupancy was impacted by understory 
vegetation height (US height), and that 
detection probability was constant. In model 
set 2, which did account for overdispersion, 
the most accurate model (AIC weight=0.15) 
was the null model [Ψ(.), p(.)], revealing that 
occupancy and detection probabilities were 
constant across the landscape.

Discussion
For our selected species, and for this 

study area in Northern Colorado, we showed 
the importance of  assessing overdispersion 
in population models. First, no two species 
had the same estimated overdispersion 
parameter. Although all species are common 
throughout their range and passerines (i.e., 
common songbirds), the range of  values 
calculated for the overdispersion parameter 
differed greatly between species. This 
stresses the importance of  calculating the 
overdispersion parameter for each species 
separately in conservation and management 
based research that include multiple species. 
Although the case could be made that species 
are generally similar in taxonomy and habitat 
use, even small differences can result in 
variation in the data set resulting a range of  
c-hat estimates. These results are similar to 
those reached by MacKenzie and Bailey, who 
found that accounting for overdispersion in 
occupancy studies was important to properly 
draw model inference, especially when 
assumptions of  the models were violated.12

For the Black-billed Magpie and the 
Dark-eyed Junco, we examined the effect 
of  accounting for overdispersion in the 
model set. In both species, adjusting 
for overdispersion greatly affected the 
inference drawn from the possible model 
set.5,12 Without this calculation, managers 
and conservationists could come to 
inaccurate misleading conclusions on 
species distributions, possibly leading to the 
improper use of  resources. For example, if  
managers were concerned with Dark-eyed 
Junco conservation, and based their efforts 
on a model set that did not account for 
overdispersion, they might over emphasize 
restoring understory vegetation where in 
actuality species persistence was affected 
little by this covariate. This is a considerable 
concern when budgets and funding are 
limited in most agencies. 

Adjusting for overdispersion has been 

more properly documented and accounted 
for in count data and mark-recapture 
studies which share many similarities to site-
occupancy estimations.17 Richards suggests 
there are four ways most studies deal with 
overdispersion in count data.17 First, is to 
estimate it, but to ignore it. Based on our 
results, failing to estimate the c-hat parameter 
for each should be greatly discouraged. 
Second, is to collect additional data (when 
data are available), to off-set for unexplained 
variation in the data set. Third, is to model the 
causes of  variation (e.g., non-independence) 
directly in the model set by inclusion of  
covariates. Finally, overdispersion can be 
addressed by modifying model selection 
methods (e.g., switching from AIC to 
QAIC). Richards concluded that although in 
some species AIC and QAIC revealed similar 
results, and provided one of  the first studies 
with quantitative support for QAIC.17

Despite the stressed importance of  
this, no method currently exists in some 
popular software used in mark/re-capture 
studies. For example, program MARK, one 
of  the most popular programs used for 
population level research with an emphasis 
on presence/absence and mark/re-capture 
data, does not currently have the ability to 
estimate the c-hat parameter for occupancy 
studies.13 This suggests that a number of  
studies underutilize this method, and many 
may not be aware of  its use in occupancy 
analysis, even though it is more commonly 
used in count data.
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